Solving Math Problems with Anime

Sam Spiro

A lower bound on the length of the shortest superpattern

Anonymous 4chan Poster, Robin Houston, Jay Pantone, and Vince Vatter

October 25, 2018

The Haruhi Problem

The Haruhi Problem

The Haruhi Problem

The sos Brigade previews their movie of questionsde quality, cirected by Haruhi Suzumiy a with nan alen-magician. Mkuru has sworn so protect a young man, played toy llsuki Koieumi but a love-triangh

02	01	"The Melancholy of Haruhi Surumiya Part One"

Kyon embers. high school as a frst year studert and meecs a strange girinamed Haruhi Suzumtra. Dui , Interested in her, Kyon becomes the frst person to solicil a normal conversation from Hanfi. This lea
05
02
"The Melancholy of Haruhi Suzumiya Part Two"

Haruhi begirs to mprove the appearance of the clutroom. Haruhi obtains a computer by staging phol dressing up in a buntry costume and handing out fiers. Later, Yuk irfies kyon so her aporament, whe

04 07 \quad "The Boredom of Haruni Suzumya"
In an effort to aleviate her boredom, Haruhl enters the SOS Brigade into a baseball sournament. Tsun work. To remedy the situation, Yuk uses her powers to atter the course of the garme.
05
03

Yuk explains the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off fram school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

The Haruhi Problem

The SOS Engade previews their movie of questionsdie quaity, cirected by Haruhi Suzumiya win nan alen-magician. Mkuru has sworn so protect a young man, played to llsuki Koizumi but a love-triangh

Kyon erters. high school as a frst year studert and meecs a strange giri named Haruhi Suzumtra. DuI , Inlerested in hef, Kyon becomes the frst person to solicil a normal conversation from Handi. This lea

05	02	"The Melancholy of Haruin Suzumiya Part Two"
"St		

Haruhi begirs to improve the appearance of the clutroom. Haruhi obtains a computer by staging phot dressing up in a bunmr costume and handing out fiers. Later, Yuk irvies Kyon so her aperament, whe
0407 "The Boredom of Haruni Suzumiya"

In an effort to alevate her boredom, Haruti enters the SOS Brigade into a baseball sournament. Tsur world. To remedy the situation, Yuks uses her powers to ater the course of the garre.
05
03
"The Melancholy of Haruiv Surumiya Part Three"

Yuk explans the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off from school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

What if you wanted to watch the show in all the other $14!-2$ ways? Is there an "efficient" way to do this?

The Haruhi Problem

The Haruhi Problem

The Haruhi Problem

The sos Brigade previews their movie of questionsde quality, cirected by Haruhi Suzumiy a with nan alen-magician. Mkuru has sworn so protect a young man, played toy llsuki Koieumi but a love-triangh

02	01	"The Melancholy of Haruhi Surumiya Part One"

Kyon embers. high school as a frst year studert and meecs a strange girinamed Haruhi Suzumtra. Dui , Interested in her, Kyon becomes the frst person to solicil a normal conversation from Hanfi. This lea
05
02
"The Melancholy of Haruhi Suzumiya Part Two"

Haruhi begirs to mprove the appearance of the clutroom. Haruhi obtains a computer by staging phol dressing up in a buntry costume and handing out fiers. Later, Yuk irfies kyon so her aporament, whe

04 07 \quad "The Boredom of Haruni Suzumya"
In an effort to aleviate her boredom, Haruhl enters the SOS Brigade into a baseball sournament. Tsun work. To remedy the situation, Yuk uses her powers to atter the course of the garme.
05
03

Yuk explains the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off fram school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

The Haruhi Problem

The SOS Engade previews their movie of questionsdie quaity, cirected by Haruhi Suzumiya win nan alen-magician. Mkuru has sworn so protect a young man, played to llsuki Koizumi but a love-triangh

Kyon erters. high school as a frst year studert and meecs a strange giri named Haruhi Suzumtra. DuI , Inlerested in hef, Kyon becomes the frst person to solicil a normal conversation from Handi. This lea

05	02	"The Melancholy of Haruin Suzumiya Part Two"
"St		

Haruhi begirs to improve the appearance of the clutroom. Haruhi obtains a computer by staging phot dressing up in a bunmr costume and handing out fiers. Later, Yuk irvies Kyon so her aperament, whe
0407 "The Boredom of Haruni Suzumiya"

In an effort to alevate her boredom, Haruti enters the SOS Brigade into a baseball sournament. Tsur world. To remedy the situation, Yuks uses her powers to ater the course of the garre.
05
03
"The Melancholy of Haruiv Surumiya Part Three"

Yuk explans the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off from school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

What if you wanted to watch the show in all the other $14!-2$ ways? Is there an "efficient" way to do this?

The Haruhi Problem

The Haruhi Problem

The Haruhi Problem

The sos Brigade previews their movie of questionsde quality, cirected by Haruhi Suzumiy a with nan alen-magician. Mkuru has sworn so protect a young man, played toy llsuki Koieumi but a love-triangh

02	01	"The Melancholy of Haruhi Surumiya Part One"

Kyon embers. high school as a frst year studert and meecs a strange girinamed Haruhi Suzumtra. Dui , Interested in her, Kyon becomes the frst person to solicil a normal conversation from Hanfi. This lea
05
02
"The Melancholy of Haruhi Suzumiya Part Two"

Haruhi begirs to mprove the appearance of the clutroom. Haruhi obtains a computer by staging phol dressing up in a buntry costume and handing out fiers. Later, Yuk irfies kyon so her aporament, whe

04 07 \quad "The Boredom of Haruni Suzumya"
In an effort to aleviate her boredom, Haruhl enters the SOS Brigade into a baseball sournament. Tsun work. To remedy the situation, Yuk uses her powers to atter the course of the garme.
05
03

Yuk explains the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off fram school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

The Haruhi Problem

The SOS Engade previews their movie of questionsdie quaity, cirected by Haruhi Suzumiya win nan alen-magician. Mkuru has sworn so protect a young man, played to llsuki Koizumi but a love-triangh

Kyon erters. high school as a frst year studert and meecs a strange giri named Haruhi Suzumtra. DuI , Inlerested in hef, Kyon becomes the frst person to solicil a normal conversation from Handi. This lea

05	02	"The Melancholy of Haruin Suzumiya Part Two"
"St		

Haruhi begirs to improve the appearance of the clutroom. Haruhi obtains a computer by staging phot dressing up in a bunmr costume and handing out fiers. Later, Yuk irvies Kyon so her aperament, whe
0407 "The Boredom of Haruni Suzumiya"

In an effort to alevate her boredom, Haruti enters the SOS Brigade into a baseball sournament. Tsur world. To remedy the situation, Yuks uses her powers to ater the course of the garre.
05
03
"The Melancholy of Haruiv Surumiya Part Three"

Yuk explans the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off from school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

What if you wanted to watch the show in all the other $14!-2$ ways? Is there an "efficient" way to do this?

The Haruhi Problem

The Haruhi Problem

The Haruhi Problem

The sos Brigade previews their movie of questionsde quality, cirected by Haruhi Suzumiy a with nan alen-magician. Mkuru has sworn so protect a young man, played toy llsuki Koieumi but a love-triangh

02	01	"The Melancholy of Haruhi Surumiya Part One"

Kyon embers. high school as a frst year studert and meecs a strange girinamed Haruhi Suzumtra. Dui , Interested in her, Kyon becomes the frst person to solicil a normal conversation from Hanfi. This lea
05
02
"The Melancholy of Haruhi Suzumiya Part Two"

Haruhi begirs to mprove the appearance of the clutroom. Haruhi obtains a computer by staging phol dressing up in a buntry costume and handing out fiers. Later, Yuk irfies kyon so her aporament, whe

04 07 \quad "The Boredom of Haruni Suzumya"
In an effort to aleviate her boredom, Haruhl enters the SOS Brigade into a baseball sournament. Tsun work. To remedy the situation, Yuk uses her powers to atter the course of the garme.
05
03

Yuk explains the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off fram school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

The Haruhi Problem

The SOS Engade previews their movie of questionsdie quaity, cirected by Haruhi Suzumiya win nan alen-magician. Mkuru has sworn so protect a young man, played to llsuki Koizumi but a love-triangh

Kyon erters. high school as a frst year studert and meecs a strange giri named Haruhi Suzumtra. DuI , Inlerested in hef, Kyon becomes the frst person to solicil a normal conversation from Handi. This lea

05	02	"The Melancholy of Haruin Suzumiya Part Two"
"St		

Haruhi begirs to improve the appearance of the clutroom. Haruhi obtains a computer by staging phot dressing up in a bunmr costume and handing out fiers. Later, Yuk irvies Kyon so her aperament, whe
0407 "The Boredom of Haruni Suzumiya"

In an effort to alevate her boredom, Haruti enters the SOS Brigade into a baseball sournament. Tsur world. To remedy the situation, Yuks uses her powers to ater the course of the garre.
05
03
"The Melancholy of Haruiv Surumiya Part Three"

Yuk explans the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off from school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

What if you wanted to watch the show in all the other $14!-2$ ways? Is there an "efficient" way to do this?

The Haruhi Problem

The Haruhi Problem

The Haruhi Problem

The sos Brigade previews their movie of questionsde quality, cirected by Haruhi Suzumiy a with nan alen-magician. Mkuru has sworn so protect a young man, played toy llsuki Koieumi but a love-triangh

02	01	"The Melancholy of Haruhi Surumiya Part One"

Kyon embers. high school as a frst year studert and meecs a strange girinamed Haruhi Suzumtra. Dui , Interested in her, Kyon becomes the frst person to solicil a normal conversation from Hanfi. This lea
05
02
"The Melancholy of Haruhi Suzumiya Part Two"

Haruhi begirs to mprove the appearance of the clutroom. Haruhi obtains a computer by staging phol dressing up in a buntry costume and handing out fiers. Later, Yuk irfies kyon so her aporament, whe

04 07 \quad "The Boredom of Haruni Suzumya"
In an effort to aleviate her boredom, Haruhl enters the SOS Brigade into a baseball sournament. Tsun work. To remedy the situation, Yuk uses her powers to atter the course of the garme.
05
03

Yuk explains the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off fram school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

The Haruhi Problem

The SOS Engade previews their movie of questionsdie quaity, cirected by Haruhi Suzumiya win nan alen-magician. Mkuru has sworn so protect a young man, played to llsuki Koizumi but a love-triangh

Kyon erters. high school as a frst year studert and meecs a strange giri named Haruhi Suzumtra. DuI , Inlerested in hef, Kyon becomes the frst person to solicil a normal conversation from Handi. This lea

05	02	"The Melancholy of Haruin Suzumiya Part Two"
"St		

Haruhi begirs to improve the appearance of the clutroom. Haruhi obtains a computer by staging phot dressing up in a bunmr costume and handing out fiers. Later, Yuk irvies Kyon so her aperament, whe
0407 "The Boredom of Haruni Suzumiya"

In an effort to alevate her boredom, Haruti enters the SOS Brigade into a baseball sournament. Tsur world. To remedy the situation, Yuks uses her powers to ater the course of the garre.
05
03
"The Melancholy of Haruiv Surumiya Part Three"

Yuk explans the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off from school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

What if you wanted to watch the show in all the other $14!-2$ ways? Is there an "efficient" way to do this?

The Haruhi Problem

The Haruhi Problem

The Haruhi Problem

The sos Brigade previews their movie of questionsde quality, cirected by Haruhi Suzumiy a with nan alen-magician. Mkuru has sworn so protect a young man, played toy llsuki Koieumi but a love-triangh

02	01	"The Melancholy of Haruhi Surumiya Part One"

Kyon embers. high school as a frst year studert and meecs a strange girinamed Haruhi Suzumtra. Dui , Interested in her, Kyon becomes the frst person to solicil a normal conversation from Hanfi. This lea
05
02
"The Melancholy of Haruhi Suzumiya Part Two"

Haruhi begirs to mprove the appearance of the clutroom. Haruhi obtains a computer by staging phol dressing up in a buntry costume and handing out fiers. Later, Yuk irfies kyon so her aporament, whe

04 07 \quad "The Boredom of Haruni Suzumya"
In an effort to aleviate her boredom, Haruhl enters the SOS Brigade into a baseball sournament. Tsun work. To remedy the situation, Yuk uses her powers to atter the course of the garme.
05
03

Yuk explains the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off fram school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

The Haruhi Problem

The SOS Engade previews their movie of questionsdie quaity, cirected by Haruhi Suzumiya win nan alen-magician. Mkuru has sworn so protect a young man, played to llsuki Koizumi but a love-triangh

Kyon erters. high school as a frst year studert and meecs a strange giri named Haruhi Suzumtra. DuI , Inlerested in hef, Kyon becomes the frst person to solicil a normal conversation from Handi. This lea

05	02	"The Melancholy of Haruin Suzumiya Part Two"
"St		

Haruhi begirs to improve the appearance of the clutroom. Haruhi obtains a computer by staging phot dressing up in a bunmr costume and handing out fiers. Later, Yuk irvies Kyon so her aperament, whe
0407 "The Boredom of Haruni Suzumiya"

In an effort to alevate her boredom, Haruti enters the SOS Brigade into a baseball sournament. Tsur world. To remedy the situation, Yuks uses her powers to ater the course of the garre.
05
03
"The Melancholy of Haruiv Surumiya Part Three"

Yuk explans the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off from school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

What if you wanted to watch the show in all the other $14!-2$ ways? Is there an "efficient" way to do this?

The Haruhi Problem

The Haruhi Problem

The Haruhi Problem

The sos Brigade previews their movie of questionsde quality, cirected by Haruhi Suzumiy a with nan alen-magician. Mkuru has sworn so protect a young man, played toy llsuki Koieumi but a love-triangh

02	01	"The Melancholy of Haruhi Surumiya Part One"

Kyon embers. high school as a frst year studert and meecs a strange girinamed Haruhi Suzumtra. Dui , Interested in her, Kyon becomes the frst person to solicil a normal conversation from Hanfi. This lea
05
02
"The Melancholy of Haruhi Suzumiya Part Two"

Haruhi begirs to mprove the appearance of the clutroom. Haruhi obtains a computer by staging phol dressing up in a buntry costume and handing out fiers. Later, Yuk irfies kyon so her aporament, whe

04 07 \quad "The Boredom of Haruni Suzumya"
In an effort to aleviate her boredom, Haruhl enters the SOS Brigade into a baseball sournament. Tsun work. To remedy the situation, Yuk uses her powers to atter the course of the garme.
05
03

Yuk explains the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off fram school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

The Haruhi Problem

The SOS Engade previews their movie of questionsdie quaity, cirected by Haruhi Suzumiya win nan alen-magician. Mkuru has sworn so protect a young man, played to llsuki Koizumi but a love-triangh

Kyon erters. high school as a frst year studert and meecs a strange giri named Haruhi Suzumtra. DuI , Inlerested in hef, Kyon becomes the frst person to solicil a normal conversation from Handi. This lea

05	02	"The Melancholy of Haruin Suzumiya Part Two"
"St		

Haruhi begirs to improve the appearance of the clutroom. Haruhi obtains a computer by staging phot dressing up in a bunmr costume and handing out fiers. Later, Yuk irvies Kyon so her aperament, whe
0407 "The Boredom of Haruni Suzumiya"

In an effort to alevate her boredom, Haruti enters the SOS Brigade into a baseball sournament. Tsur world. To remedy the situation, Yuks uses her powers to ater the course of the garre.
05
03
"The Melancholy of Haruiv Surumiya Part Three"

Yuk explans the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off from school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

What if you wanted to watch the show in all the other $14!-2$ ways? Is there an "efficient" way to do this?

The Haruhi Problem

The Haruhi Problem

The Haruhi Problem

The sos Brigade previews their movie of questionsde quality, cirected by Haruhi Suzumiy a with nan alen-magician. Mkuru has sworn so protect a young man, played toy llsuki Koieumi but a love-triangh

02	01	"The Melancholy of Haruhi Surumiya Part One"

Kyon embers. high school as a frst year studert and meecs a strange girinamed Haruhi Suzumtra. Dui , Interested in her, Kyon becomes the frst person to solicil a normal conversation from Hanfi. This lea
05
02
"The Melancholy of Haruhi Suzumiya Part Two"

Haruhi begirs to mprove the appearance of the clutroom. Haruhi obtains a computer by staging phol dressing up in a buntry costume and handing out fiers. Later, Yuk irfies kyon so her aporament, whe

04 07 \quad "The Boredom of Haruni Suzumya"
In an effort to aleviate her boredom, Haruhl enters the SOS Brigade into a baseball sournament. Tsun work. To remedy the situation, Yuk uses her powers to atter the course of the garme.
05
03

Yuk explains the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off fram school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

The Haruhi Problem

The SOS Engade previews their movie of questionsdie quaity, cirected by Haruhi Suzumiya win nan alen-magician. Mkuru has sworn so protect a young man, played to llsuki Koizumi but a love-triangh

Kyon erters. high school as a frst year studert and meecs a strange giri named Haruhi Suzumtra. DuI , Inlerested in hef, Kyon becomes the frst person to solicil a normal conversation from Handi. This lea

05	02	"The Melancholy of Haruin Suzumiya Part Two"
"St		

Haruhi begirs to improve the appearance of the clutroom. Haruhi obtains a computer by staging phot dressing up in a bunmr costume and handing out fiers. Later, Yuk irvies Kyon so her aperament, whe
0407 "The Boredom of Haruni Suzumiya"

In an effort to alevate her boredom, Haruti enters the SOS Brigade into a baseball sournament. Tsur world. To remedy the situation, Yuks uses her powers to ater the course of the garre.
05
03
"The Melancholy of Haruiv Surumiya Part Three"

Yuk explans the Integrated Data Sentient Entty and how E relates to hersef and to Haruhi She says day off from school, the SOS Brigade spits up to search the cty for mysteries, daring which Mkuru te Mkuru, and itsusi all confrm that Haruhi recreated the universe three years ago.

What if you wanted to watch the show in all the other $14!-2$ ways? Is there an "efficient" way to do this?

A Shorter Show

A Shorter Show

A Shorter Show

A Shorter Show

Superpermutations

Superpermutations

A superpermutation on n symbols is a string that contains every permutation of $\{1, \ldots, n\}$ as a substring.

Superpermutations

A superpermutation on n symbols is a string that contains every permutation of $\{1, \ldots, n\}$ as a substring. Let $s(n)$ denote the length of the smallest superpermutation on n symbols. For example, $s(2)=3$

Superpermutations

A superpermutation on n symbols is a string that contains every permutation of $\{1, \ldots, n\}$ as a substring. Let $s(n)$ denote the length of the smallest superpermutation on n symbols. For example, $s(2)=3$ and

$$
n!\leq s(n) \leq n \cdot n!.
$$

Superpermutations

A superpermutation on n symbols is a string that contains every permutation of $\{1, \ldots, n\}$ as a substring. Let $s(n)$ denote the length of the smallest superpermutation on n symbols. For example, $s(2)=3$ and

$$
n!\leq s(n) \leq n \cdot n!
$$

Theorem

$$
s(n) \leq n!+(n-1)!+\cdots+1!.
$$

Superpermutations

A superpermutation on n symbols is a string that contains every permutation of $\{1, \ldots, n\}$ as a substring. Let $s(n)$ denote the length of the smallest superpermutation on n symbols. For example, $s(2)=3$ and

$$
n!\leq s(n) \leq n \cdot n!.
$$

Theorem

$$
s(n) \leq n!+(n-1)!+\cdots+1!.
$$

Picture from Jeffrey A. Barnett.

Superpermutations

This upper bound is tight up to $s(5)$, but recently it was shown that this fails to be tight for all $n \geq 6$.

Superpermutations

This upper bound is tight up to $s(5)$, but recently it was shown that this fails to be tight for all $n \geq 6$.

Theorem (Egan 2018)

$$
s(n) \leq n!+(n-1)!+(n-2)!+(n-3)!+n-3 .
$$

Superpermutations

This upper bound is tight up to $s(5)$, but recently it was shown that this fails to be tight for all $n \geq 6$.

Theorem (Egan 2018)

$$
s(n) \leq n!+(n-1)!+(n-2)!+(n-3)!+n-3 .
$$

Superpermutations

This upper bound is tight up to $s(5)$, but recently it was shown that this fails to be tight for all $n \geq 6$.

Theorem (Egan 2018)

$$
s(n) \leq n!+(n-1)!+(n-2)!+(n-3)!+n-3 .
$$

What about lower bounds?

Superpermutations

Construct a weighted digraph as follows. Let your vertex set consist of all permutations on n. Draw an edge between every two permutations where the weight of the edge from π to σ is the minimal number of symbols we need to add to π to get σ. Delete all edges for which the associated transformation produces an intermediate permutation.

Superpermutations

Given an ordered list of permutations π_{1}, \ldots, π_{m} (which we think of as a "walk" $)$, we define $w t\left(\pi_{1}, \ldots, \pi_{m}\right)=\sum w t\left(\pi_{i}, \pi_{i+1}\right)$.

Superpermutations

Given an ordered list of permutations π_{1}, \ldots, π_{m} (which we think of as a "walk"), we define $w t\left(\pi_{1}, \ldots, \pi_{m}\right)=\sum w t\left(\pi_{i}, \pi_{i+1}\right)$.

Let $d\left(\pi_{1}, \ldots, \pi_{m}\right)$ denote the number of distinct permutations visited by a walk π_{1}, \ldots, π_{m}.

Superpermutations

Given an ordered list of permutations π_{1}, \ldots, π_{m} (which we think of as a "walk"), we define $w t\left(\pi_{1}, \ldots, \pi_{m}\right)=\sum w t\left(\pi_{i}, \pi_{i+1}\right)$.

Let $d\left(\pi_{1}, \ldots, \pi_{m}\right)$ denote the number of distinct permutations visited by a walk π_{1}, \ldots, π_{m}.

Proposition

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)-1
$$

Superpermutations

Proposition

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)-1
$$

Superpermutations

Proposition

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)-1
$$

Corollary

$$
s(n) \geq n!+n-1 \text {. }
$$

Superpermutations

Proposition

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)-1
$$

Corollary

$$
s(n) \geq n!+n-1 .
$$

Let π be a superpermutation whose corresponding walk in the digraph is π_{1}, \ldots, π_{m}. We can build π by first placing down the n symbols of π_{1} and then add symbols according to the walk.

Superpermutations

Proposition

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)-1
$$

Corollary

$$
s(n) \geq n!+n-1 .
$$

Let π be a superpermutation whose corresponding walk in the digraph is π_{1}, \ldots, π_{m}. We can build π by first placing down the n symbols of π_{1} and then add symbols according to the walk. Thus the number of additional symbols we must add is exactly

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)-1=n!-1
$$

since we assumed the walk of π visits every permutation.

Superpermutations

Define the 1-loop of a permutation π to be the set of permutations that π can reach by only using edges of weight 1 . Observe that the number of 1 -loops is $(n-1)$!.

Superpermutations

Define the 1-loop of a permutation π to be the set of permutations that π can reach by only using edges of weight 1 . Observe that the number of 1 -loops is $(n-1)$!.

Define $c\left(\pi_{1}, \ldots, \pi_{m}\right)$ to be the number of 1-loops that the walk $\pi_{1}, \ldots, \pi_{\mathbf{m}-\mathbf{1}}$ has completely gone through (note the index of that last step of the walk!).

Superpermutations

Proposition

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)+c\left(\pi_{1}, \ldots, \pi_{m}\right)-1
$$

Superpermutations

Proposition

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)+c\left(\pi_{1}, \ldots, \pi_{m}\right)-1
$$

The statement holds for $m=1$. Inductively assume true up to m, we wish to see how much the left and righthand side change when adding the step $\pi_{m-1} \pi_{m}$.

Superpermutations

Proposition

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)+c\left(\pi_{1}, \ldots, \pi_{m}\right)-1
$$

The statement holds for $m=1$. Inductively assume true up to m, we wish to see how much the left and righthand side change when adding the step $\pi_{m-1} \pi_{m}$.

If $w t\left(\pi_{m-1}, \pi_{m}\right) \geq 2$ then the lefthand side increases by at least 2 , but the righthand side increases by at most 2 (for every step of the walk), so the inequality holds.

Superpermutations

Proposition

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)+c\left(\pi_{1}, \ldots, \pi_{m}\right)-1
$$

The statement holds for $m=1$. Inductively assume true up to m, we wish to see how much the left and righthand side change when adding the step $\pi_{m-1} \pi_{m}$.

If $w t\left(\pi_{m-1}, \pi_{m}\right) \geq 2$ then the lefthand side increases by at least 2 , but the righthand side increases by at most 2 (for every step of the walk), so the inequality holds.

If $w t\left(\pi_{m-1}, \pi_{m}\right)=1$ then the walk didn't leave its 1 -loop, so either (1) it didn't visit a new permutation or (2) it didn't finish a 1-loop. In either case the righthand side increases by at most 1 . We conclude the result.

Superpermutations

Corollary (Ashlock and Tillotson, 1993)

$$
s(n) \geq n!+(n-1)!+n-2
$$

Superpermutations

Corollary (Ashlock and Tillotson, 1993)

$$
s(n) \geq n!+(n-1)!+n-2 .
$$

This was all that was known by the combinatorics community.

Superpermutations

Corollary (Ashlock and Tillotson, 1993)

$$
s(n) \geq n!+(n-1)!+n-2 .
$$

This was all that was known by the combinatorics community. However, while working on the Haruhi problem, someone on 4chan managed to improve this bound!

Superpermutations

Observe that there is a unique edge from π of weight 2, i.e. the one which goes to $\pi(3) \cdots \pi(n) \pi(2) \pi(1)$. E.g. 51234 goes to 23415.

Superpermutations

Observe that there is a unique edge from π of weight 2, i.e. the one which goes to $\pi(3) \cdots \pi(n) \pi(2) \pi(1)$. E.g. 51234 goes to 23415.
The 2-loop generated by π is defined as the set of vertices visited by the walk that starts at π, follows $n-1$ consecutive edges of weight 1 , then follows the (unique) edge of weight 2 , and then repeats these steps $n-2$ more times.

Picture from "A Lower Bound on the Length of the Shortest Superpattern."

Superpermutations

Observe that this 2-loop is generated precisely by all of the bold permutations in the above picture (i.e. by fixing the last entry of 12345 and then cyclically generating the elements).

Superpermutations

Observe that this 2-loop is generated precisely by all of the bold permutations in the above picture (i.e. by fixing the last entry of 12345 and then cyclically generating the elements). Also observe that each 2-loop contains exactly $n(n-1)$ elements.

Superpermutations

We say that a walk visits the 2-loop generated by π if it follows an edge of weight 2 or more to arrive at π. Note that this means that the 2 -loop we are at depends not only on the vertex we are currently at, but also how we got there.

Superpermutations

We say that a walk visits the 2-loop generated by π if it follows an edge of weight 2 or more to arrive at π. Note that this means that the 2 -loop we are at depends not only on the vertex we are currently at, but also how we got there.
Let $t\left(\pi_{1}, \ldots, \pi_{m}\right)$ denote the number of 2-loops visited by the walk where we let $t\left(\pi_{1}\right)=1$. Note that since each 2-loop contains $n(n-1)$ permutations, a walk visiting every permutation must enter at least ($n-2$)! different 2-loops.

Superpermutations

We say that a walk visits the 2-loop generated by π if it follows an edge of weight 2 or more to arrive at π. Note that this means that the 2 -loop we are at depends not only on the vertex we are currently at, but also how we got there.
Let $t\left(\pi_{1}, \ldots, \pi_{m}\right)$ denote the number of 2-loops visited by the walk where we let $t\left(\pi_{1}\right)=1$. Note that since each 2-loop contains $n(n-1)$ permutations, a walk visiting every permutation must enter at least ($n-2$)! different 2-loops.

Theorem

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)+c\left(\pi_{1}, \ldots, \pi_{m}\right)+t\left(\pi_{1}, \ldots \pi_{m}\right)-2
$$

Superpermutations

Theorem

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)+c\left(\pi_{1}, \ldots, \pi_{m}\right)+t\left(\pi_{1}, \ldots \pi_{m}\right)-2
$$

The result holds for $m=1$, so assume true up to m.

Superpermutations

Theorem

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)+c\left(\pi_{1}, \ldots, \pi_{m}\right)+t\left(\pi_{1}, \ldots \pi_{m}\right)-2 .
$$

The result holds for $m=1$, so assume true up to m. If $w t\left(\pi_{m-1}, \pi_{m}\right) \geq 3$ then we're done since the righthand side can increase by at most 3 .

Superpermutations

Theorem

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)+c\left(\pi_{1}, \ldots, \pi_{m}\right)+t\left(\pi_{1}, \ldots \pi_{m}\right)-2 .
$$

The result holds for $m=1$, so assume true up to m. If $w t\left(\pi_{m-1}, \pi_{m}\right) \geq 3$ then we're done since the righthand side can increase by at most 3 . If $w t\left(\pi_{m-1}, \pi_{m}\right)=1$ then at most one of d, c can increase by 1 and t can't increase, so we again have the result.

Superpermutations

Theorem

$$
w t\left(\pi_{1}, \ldots, \pi_{m}\right) \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)+c\left(\pi_{1}, \ldots, \pi_{m}\right)+t\left(\pi_{1}, \ldots \pi_{m}\right)-2 .
$$

The result holds for $m=1$, so assume true up to m. If $w t\left(\pi_{m-1}, \pi_{m}\right) \geq 3$ then we're done since the righthand side can increase by at most 3 . If $w t\left(\pi_{m-1}, \pi_{m}\right)=1$ then at most one of d, c can increase by 1 and t can't increase, so we again have the result. It remains to deal with the case $w t\left(\pi_{m-1}, \pi_{m}\right)=2$.

Superpermutations

Assume $w t\left(\pi_{m-1}, \pi_{m}\right)=2$. We claim that c and t can't both increase, which will give us the result.

Superpermutations

Assume $w t\left(\pi_{m-1}, \pi_{m}\right)=2$. We claim that c and t can't both increase, which will give us the result.
Assume first that c increased, i.e. π_{m-1} was the last permutation of its 1-loop that we needed to visit.

Superpermutations

Assume $w t\left(\pi_{m-1}, \pi_{m}\right)=2$. We claim that c and t can't both increase, which will give us the result.
Assume first that c increased, i.e. π_{m-1} was the last permutation of its 1-loop that we needed to visit. This means we must have already visited $\sigma=\pi_{m-1}(2) \pi_{m-1}(3) \cdots \pi_{m-1}(n) \pi_{m-1}(1)$.

Superpermutations

Assume $w t\left(\pi_{m-1}, \pi_{m}\right)=2$. We claim that c and t can't both increase, which will give us the result.
Assume first that c increased, i.e. π_{m-1} was the last permutation of its 1-loop that we needed to visit. This means we must have already visited $\sigma=\pi_{m-1}(2) \pi_{m-1}(3) \cdots \pi_{m-1}(n) \pi_{m-1}(1)$. However, we didn't visit σ from π_{m-1} (since we assumed we just visited π_{m-1} for the first time).

Superpermutations

Assume $w t\left(\pi_{m-1}, \pi_{m}\right)=2$. We claim that c and t can't both increase, which will give us the result.
Assume first that c increased, i.e. π_{m-1} was the last permutation of its 1-loop that we needed to visit. This means we must have already visited $\sigma=\pi_{m-1}(2) \pi_{m-1}(3) \cdots \pi_{m-1}(n) \pi_{m-1}(1)$. However, we didn't visit σ from π_{m-1} (since we assumed we just visited π_{m-1} for the first time). Thus σ was visited by an edge of weight at least 2 , so we already visited its corresponding 2-loop.

Superpermutations

Assume $w t\left(\pi_{m-1}, \pi_{m}\right)=2$. We claim that c and t can't both increase, which will give us the result.
Assume first that c increased, i.e. π_{m-1} was the last permutation of its 1-loop that we needed to visit. This means we must have already visited $\sigma=\pi_{m-1}(2) \pi_{m-1}(3) \cdots \pi_{m-1}(n) \pi_{m-1}(1)$. However, we didn't visit σ from π_{m-1} (since we assumed we just visited π_{m-1} for the first time). Thus σ was visited by an edge of weight at least 2 , so we already visited its corresponding 2-loop. One can show that π_{m} and σ have the same 2-loop, so t doesn't increase in this scenario as desired.

Superpermutations

Corollary (4chan 2018)

$$
s(n) \geq n!+(n-1)!+(n-2)!+n-3 .
$$

Superpermutations

Corollary (4chan 2018)

$$
s(n) \geq n!+(n-1)!+(n-2)!+n-3 .
$$

If a walk π_{1}, \ldots, π_{m} goes through every permutation, then it (1) must visit all of the n ! permutations

Superpermutations

Corollary (4chan 2018)

$$
s(n) \geq n!+(n-1)!+(n-2)!+n-3 .
$$

If a walk π_{1}, \ldots, π_{m} goes through every permutation, then it (1) must visit all of the n ! permutations, (2) complete $(n-1)$! of the 1 -loops (possibly completing the last at step π_{m})

Superpermutations

Corollary (4chan 2018)

$$
s(n) \geq n!+(n-1)!+(n-2)!+n-3 .
$$

If a walk π_{1}, \ldots, π_{m} goes through every permutation, then it (1) must visit all of the n ! permutations, (2) complete $(n-1)$! of the 1 -loops (possibly completing the last at step π_{m}), and (3) visit at least ($n-2$)! different 2-loops (since each 2-loop contains only $n(n-1)$ permutations).

Superpermutations

Corollary (4chan 2018)

$$
s(n) \geq n!+(n-1)!+(n-2)!+n-3 .
$$

If a walk π_{1}, \ldots, π_{m} goes through every permutation, then it (1) must visit all of the n ! permutations, (2) complete $(n-1)$! of the 1 -loops (possibly completing the last at step π_{m}), and (3) visit at least ($n-2$)! different 2-loops (since each 2-loop contains only $n(n-1)$ permutations). We start with n symbols for the first permutation and then add the weight of the corresponding walk, which will be at least

$$
\begin{aligned}
w t\left(\pi_{1}, \ldots, \pi_{m}\right) & \geq d\left(\pi_{1}, \ldots, \pi_{m}\right)+c\left(\pi_{1}, \ldots, \pi_{m}\right)+t\left(\pi_{1}, \ldots \pi_{m}\right)-2 \\
& \geq n!+(n-1)!-1+(n-2)!-2
\end{aligned}
$$

so we conclude the result.

Semi-restricted RPS

Semi-restricted RPS

Consider the following two player game played by Rei and Norman.

Semi-restricted RPS

Consider the following two player game played by Rei and Norman.

Semi-restricted RPS

This question was partially inspired by the game "Restricted Rock Paper Scissors" investigated by Fukumoto.
[9] N. Fukumoto. Tobaku Mokushiroku Kaiji. Weekly Young Magazine, 1996.

Semi-restricted RPS

This question was partially inspired by the game "Restricted Rock Paper Scissors" investigated by Fukumoto.
[9] N. Fukumoto. Tobaku Mokushiroku Kaiji. Weekly Young Magazine, 1996.

Semi-restricted RPS

This question was partially inspired by the game "Restricted Rock Paper Scissors" investigated by Fukumoto.
[9] N. Fukumoto. Tobaku Mokushiroku Kaiji. Weekly Young Magazine, 1996.

Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much of an advantage does Norman have?

Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much of an advantage does Norman have?

Theorem (S.-Surya-Zeng; 2022)
The unique optimal strategy for Rei is to play each option with probability $1 / 3$ when every option remains, and to play the stronger card with probability $2 / 3$ when two options remain.

Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much of an advantage does Norman have?

Theorem (S.-Surya-Zeng; 2022)

The unique optimal strategy for Rei is to play each option with probability $1 / 3$ when every option remains, and to play the stronger card with probability $2 / 3$ when two options remain. Moreover, Norman's advantage is $\approx \sqrt{n}$ if Rei plays each of Rock, Paper, and Scissors n times.

Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much of an advantage does Norman have?

Theorem (S.-Surya-Zeng; 2022)

The unique optimal strategy for Rei is to play each option with probability $1 / 3$ when every option remains, and to play the stronger card with probability $2 / 3$ when two options remain. Moreover, Norman's advantage is $\approx \sqrt{n}$ if Rei plays each of Rock, Paper, and Scissors n times.

Theorem (Janson; February 23 2024)
The advantage is asymptotic to

$$
\frac{3 \sqrt{3}}{2 \sqrt{\pi}} \sqrt{n}
$$

More General Games

More General Games

Given a digraph D, define the D-game by having two players simultaneously pick vertices of D each round.

More General Games

Given a digraph D, define the D-game by having two players simultaneously pick vertices of D each round.

Given a non-negative integer vector \vec{r}, the semi-restricted D-game (with parameter \vec{r}) is defined by having players Rei and Norman iteratively play the D-game, with the restriction that Rei must play vertex v exactly \vec{r}_{v} times.

More General Games

Given a digraph D, define the D-game by having two players simultaneously pick vertices of D each round.

Given a non-negative integer vector \vec{r}, the semi-restricted D-game (with parameter \vec{r}) is defined by having players Rei and Norman iteratively play the D-game, with the restriction that Rei must play vertex v exactly \vec{r}_{v} times. E.g. if D is as above and $\vec{r}=(n, n, n)$, then this is semi-restricted RPS.

Optimal Scores
 Let $S_{D}(\vec{r})$ be the expected score for Norman in the semi-restricted D game is both players play optimally.

Optimal Scores

Let $S_{D}(\vec{r})$ be the expected score for Norman in the semi-restricted D game is both players play optimally.

Theorem (S.-Surya-Zeng; 2022)

$$
S_{D}(\vec{r}) \geq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}
$$

Optimal Scores

Let $S_{D}(\vec{r})$ be the expected score for Norman in the semi-restricted D game is both players play optimally.
Theorem (S.-Surya-Zeng; 2022)

$$
\begin{aligned}
& S_{D}(\vec{r}) \geq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}, \\
& S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+C_{D} M^{2 / 3},
\end{aligned}
$$

where $M=\sum_{u} \vec{r}_{u}$ and C_{D} is some constant.

Optimal Scores

Let $S_{D}(\vec{r})$ be the expected score for Norman in the semi-restricted D game is both players play optimally.
Theorem (S.-Surya-Zeng; 2022)

$$
\begin{aligned}
& S_{D}(\vec{r}) \geq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}, \\
& S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+C_{D} M^{2 / 3}
\end{aligned}
$$

where $M=\sum_{u} \vec{r}_{u}$ and C_{D} is some constant.
Theorem (S.-Surya-Zeng; 2022)

$$
\begin{aligned}
& S_{D}(n, \ldots, n) \geq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n, \\
& S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+C_{D} n^{1 / 2}
\end{aligned}
$$

Optimal Strategies

Theorem (S.-Surya-Zeng; 2022)
If D is the directed path $1 \rightarrow 2 \rightarrow 3$, then a strategy for Rei is optimal if and only if she plays 3 with probability $1 / 2$ whenever she can.

$$
\begin{aligned}
& \mathbf{1} \longrightarrow \mathbf{2} \longrightarrow \mathbf{2} \\
& p
\end{aligned} \underset{1 / 2-p}{ } \mathbf{3}
$$

Optimal Strategies

Theorem (S.-Surya-Zeng; 2022)
If D is the directed path $1 \rightarrow 2 \rightarrow 3$, then a strategy for Rei is optimal if and only if she plays 3 with probability $1 / 2$ whenever she can.

Question

Does every digraph D have an optimal strategy for Rei which is "oblivious", i.e. which only looks at which u Rei can play and ignores how many times she can play it?

Optimal Strategies

Theorem (S.-Surya-Zeng; 2022)
The digraph depicted below does not have an oblivious optimal strategy for Rei.

Optimal Strategies

Theorem (S.-Surya-Zeng; 2022)

The digraph depicted below does not have an oblivious optimal strategy for Rei.

Theorem (S.-Surya-Zeng; 2022)
Almost every Eulerian tournament does not have an oblivious optimal strategy for Rei.

Proofs: Bounds

Theorem

$$
S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+C_{D} n^{1 / 2}
$$

Proofs: Bounds

Theorem

$$
S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+C_{D} n^{1 / 2} .
$$

Consider the following strategy for Rei: uniformly at random pick $v \in V(D)$ until some option runs out, then play arbitrarily.

Proofs: Bounds

Theorem

$$
S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+C_{D} n^{1 / 2} .
$$

Consider the following strategy for Rei: uniformly at random pick $v \in V(D)$ until some option runs out, then play arbitrarily. Until something runs out, Norman can gain at most

$$
\max _{v} \frac{d^{+}(v)}{|V(D)|}-\frac{d^{-}(v)}{|V(D)|}
$$

points in expectation each round.

Proofs: Bounds

Theorem

$$
S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+C_{D} n^{1 / 2}
$$

Consider the following strategy for Rei: uniformly at random pick $v \in V(D)$ until some option runs out, then play arbitrarily. Until something runs out, Norman can gain at most

$$
\max _{v} \frac{d^{+}(v)}{|V(D)|}-\frac{d^{-}(v)}{|V(D)|}
$$

points in expectation each round. Thus in the first phase, Norman gains at most

$$
\left(\max _{v} \frac{d^{+}(v)}{|V(D)|}-\frac{d^{-}(v)}{|V(D)|}\right) \cdot|V(D)| n .
$$

Proofs: Bounds

Theorem

$$
S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+C_{D} n^{1 / 2}
$$

Consider the following strategy for Rei: uniformly at random pick $v \in V(D)$ until some option runs out, then play arbitrarily. Until something runs out, Norman can gain at most

$$
\max _{v} \frac{d^{+}(v)}{|V(D)|}-\frac{d^{-}(v)}{|V(D)|}
$$

points in expectation each round. Thus in the first phase, Norman gains at most

$$
\left(\max _{v} \frac{d^{+}(v)}{|V(D)|}-\frac{d^{-}(v)}{|V(D)|}\right) \cdot|V(D)| n .
$$

One can show that in expectation only $C_{D} n^{1 / 2}$ turns remain after Rei runs out of some vertex to play.

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+C_{D} M^{2 / 3},
$$

where $M=\sum \vec{r}_{u}$.

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+C_{D} M^{2 / 3},
$$

where $M=\sum \vec{r}_{u}$.
First Rei arbitrarily plays vertices v with $\vec{r}_{v} \leq M^{2 / 3}$, which costs her at most $|V(D)| M^{2 / 3}$.

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+C_{D} M^{2 / 3}
$$

where $M=\sum \vec{r}_{u}$.
First Rei arbitrarily plays vertices v with $\vec{r}_{v} \leq M^{2 / 3}$, which costs her at most $|V(D)| M^{2 / 3}$. Rei then plays vertex v with $\frac{\overrightarrow{r_{v}}}{\sum_{u} \vec{F}_{u}}$ until something runs out, then she plays arbitrarily.

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+C_{D} M^{2 / 3}
$$

where $M=\sum \vec{r}_{u}$.
First Rei arbitrarily plays vertices v with $\vec{r}_{v} \leq M^{2 / 3}$, which costs her at most $|V(D)| M^{2 / 3}$. Rei then plays vertex v with $\frac{\vec{r}_{v}}{\sum_{u} \vec{r}_{u}}$ until something runs out, then she plays arbitrarily. During this first phase, Norman expects to gain at most

$$
\left(\max _{v} \sum_{u \in N^{+}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}-\sum_{u \in N^{-}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}\right) \cdot \sum_{w} \vec{r}_{w}
$$

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+C_{D} M^{2 / 3}
$$

where $M=\sum \vec{r}_{u}$.
First Rei arbitrarily plays vertices v with $\vec{r}_{v} \leq M^{2 / 3}$, which costs her at most $|V(D)| M^{2 / 3}$. Rei then plays vertex v with $\frac{\overrightarrow{r_{v}}}{\sum_{u} \vec{F}_{u}}$ until something runs out, then she plays arbitrarily. During this first phase, Norman expects to gain at most

$$
\left(\max _{v} \sum_{u \in N^{+}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}-\sum_{u \in N^{-}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}\right) \cdot \sum_{w} \vec{r}_{w}
$$

After something runs out, we expect the number of actions for any v to be at most $\vec{r}_{v}^{-1 / 2} \sum_{u} \vec{r}_{u}$

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+C_{D} M^{2 / 3}
$$

where $M=\sum \vec{r}_{u}$.
First Rei arbitrarily plays vertices v with $\vec{r}_{v} \leq M^{2 / 3}$, which costs her at most $|V(D)| M^{2 / 3}$. Rei then plays vertex v with $\frac{\overrightarrow{r_{v}}}{\sum_{u} \vec{F}_{u}}$ until something runs out, then she plays arbitrarily. During this first phase, Norman expects to gain at most

$$
\left(\max _{v} \sum_{u \in N^{+}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}-\sum_{u \in N^{-}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}\right) \cdot \sum_{w} \vec{r}_{w}
$$

After something runs out, we expect the number of actions for any v to be at most $\vec{r}_{v}^{-1 / 2} \sum_{u} \vec{r}_{u} \leq M^{-1 / 3} \cdot M$.

Proofs: Strategies

Lemma
For RPS we have $S_{D}\left(\vec{r}-\delta_{s}\right) \leq S_{D}\left(\vec{r}-\delta_{p}\right)+1$.

Proofs: Strategies

Proofs: Strategies

Assume there was an oblivious optimal strategy for Rei with p_{w} the probability she picks w when every option is available.

Proofs: Strategies

Assume there was an oblivious optimal strategy for Rei with p_{w} the probability she picks w when every option is available. One can show for this D that if any w, w^{\prime} has

$$
\sum_{u \in N^{+}(w)} p_{u}-\sum_{u \in N^{-}(w)} p_{u}<\sum_{u \in N^{+}\left(w^{\prime}\right)} p_{u}-\sum_{u \in N^{-}\left(w^{\prime}\right)} p_{u}
$$

Proofs: Strategies

Assume there was an oblivious optimal strategy for Rei with p_{w} the probability she picks w when every option is available. One can show for this D that if any w, w^{\prime} has

$$
\sum_{u \in N^{+}(w)} p_{u}-\sum_{u \in N^{-}(w)} p_{u}<\sum_{u \in N^{+}\left(w^{\prime}\right)} p_{u}-\sum_{u \in N^{-}\left(w^{\prime}\right)} p_{u}
$$

then there exist \vec{r} with $S_{D}(\vec{r}) \gg \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{+}(v)} \vec{r}_{u}$.

Proofs: Strategies

Assume there was an oblivious optimal strategy for Rei with p_{w} the probability she picks w when every option is available. One can show for this D that if any w, w^{\prime} has

$$
\sum_{u \in N^{+}(w)} p_{u}-\sum_{u \in N^{-}(w)} p_{u}<\sum_{u \in N^{+}\left(w^{\prime}\right)} p_{u}-\sum_{u \in N^{-}\left(w^{\prime}\right)} p_{u}
$$

then there exist \vec{r} with $S_{D}(\vec{r}) \gg \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{+}(v)} \vec{r}_{u}$. One can show that such w, w^{\prime} exist for all p, giving a contradiction.

Open Problems

Question

What are the optimal strategies for the semi-restricted D-game with D as below?

Open Problems

Question

What are the optimal strategies for the semi-restricted D-game with D as below?

Question

What are the optimal strategies for directed paths?

あなたは多分日本語が読めません！

