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Superpermutations

A superpermutation on n symbols is a string that contains every
permutation of {1, . . . , n} as a substring. Let s(n) denote the length of
the smallest superpermutation on n symbols. For example, s(2) = 3 and

n! ≤ s(n) ≤ n · n!.

Theorem

s(n) ≤ n! + (n − 1)! + · · ·+ 1!.

Picture from Jeffrey A. Barnett.
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Superpermutations

This upper bound is tight up to s(5), but recently it was shown that this
fails to be tight for all n ≥ 6.

Theorem (Egan 2018)

s(n) ≤ n! + (n − 1)! + (n − 2)! + (n − 3)! + n − 3.

What about lower bounds?
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Superpermutations
Construct a weighted digraph as follows. Let your vertex set consist of all
permutations on n. Draw an edge between every two permutations where
the weight of the edge from π to σ is the minimal number of symbols we
need to add to π to get σ. Delete all edges for which the associated
transformation produces an intermediate permutation.
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Given an ordered list of permutations π1, . . . , πm (which we think of as a
“walk”), we define wt(π1, . . . , πm) =

∑
wt(πi , πi+1).

Let d(π1, . . . , πm) denote the number of distinct permutations visited by a
walk π1, . . . , πm.

Proposition

wt(π1, . . . , πm) ≥ d(π1, . . . , πm)− 1.
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Corollary

s(n) ≥ n! + n − 1.

Let π be a superpermutation whose corresponding walk in the digraph is
π1, . . . , πm. We can build π by first placing down the n symbols of π1 and
then add symbols according to the walk. Thus the number of additional
symbols we must add is exactly

wt(π1, . . . , πm) ≥ d(π1, . . . , πm)− 1 = n!− 1,

since we assumed the walk of π visits every permutation.
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Superpermutations

Define the 1-loop of a permutation π to be the set of permutations that π
can reach by only using edges of weight 1. Observe that the number of
1-loops is (n − 1)!.

Define c(π1, . . . , πm) to be the number of 1-loops that the walk
π1, . . . , πm−1 has completely gone through (note the index of that last
step of the walk!).
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Proposition

wt(π1, . . . , πm) ≥ d(π1, . . . , πm) + c(π1, . . . , πm)− 1.

The statement holds for m = 1. Inductively assume true up to m, we wish
to see how much the left and righthand side change when adding the step
πm−1πm.

If wt(πm−1, πm) ≥ 2 then the lefthand side increases by at least 2, but the
righthand side increases by at most 2 (for every step of the walk), so the
inequality holds.

If wt(πm−1, πm) = 1 then the walk didn’t leave its 1-loop, so either (1) it
didn’t visit a new permutation or (2) it didn’t finish a 1-loop. In either
case the righthand side increases by at most 1. We conclude the result.
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Corollary (Ashlock and Tillotson, 1993)

s(n) ≥ n! + (n − 1)! + n − 2.

This was all that was known by the combinatorics community. However,
while working on the Haruhi problem, someone on 4chan managed to
improve this bound!
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Superpermutations

Observe that there is a unique edge from π of weight 2, i.e. the one which
goes to π(3) · · ·π(n)π(2)π(1). E.g. 51234 goes to 23415.

The 2-loop generated by π is defined as the set of vertices visited by the
walk that starts at π, follows n − 1 consecutive edges of weight 1, then
follows the (unique) edge of weight 2, and then repeats these steps n − 2
more times.

Picture from “A Lower Bound on the Length of the Shortest
Superpattern.”
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Superpermutations

Observe that this 2-loop is generated precisely by all of the bold
permutations in the above picture (i.e. by fixing the last entry of 12345
and then cyclically generating the elements).

Also observe that each
2-loop contains exactly n(n − 1) elements.
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Superpermutations

We say that a walk visits the 2-loop generated by π if it follows an edge of
weight 2 or more to arrive at π. Note that this means that the 2-loop we
are at depends not only on the vertex we are currently at, but also how we
got there.

Let t(π1, . . . , πm) denote the number of 2-loops visited by the walk where
we let t(π1) = 1. Note that since each 2-loop contains n(n − 1)
permutations, a walk visiting every permutation must enter at least
(n − 2)! different 2-loops.

Theorem

wt(π1, . . . , πm) ≥ d(π1, . . . , πm) + c(π1, . . . , πm) + t(π1, . . . πm)− 2.
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The result holds for m = 1, so assume true up to m.

If wt(πm−1, πm) ≥ 3
then we’re done since the righthand side can increase by at most 3. If
wt(πm−1, πm) = 1 then at most one of d , c can increase by 1 and t can’t
increase, so we again have the result. It remains to deal with the case
wt(πm−1, πm) = 2.
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Superpermutations

Assume wt(πm−1, πm) = 2. We claim that c and t can’t both increase,
which will give us the result.

Assume first that c increased, i.e. πm−1 was the last permutation of its
1-loop that we needed to visit. This means we must have already visited
σ = πm−1(2)πm−1(3) · · ·πm−1(n)πm−1(1). However, we didn’t visit σ
from πm−1 (since we assumed we just visited πm−1 for the first time).
Thus σ was visited by an edge of weight at least 2, so we already visited
its corresponding 2-loop. One can show that πm and σ have the same
2-loop, so t doesn’t increase in this scenario as desired.
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Corollary (4chan 2018)

s(n) ≥ n! + (n − 1)! + (n − 2)! + n − 3.

If a walk π1, . . . , πm goes through every permutation, then it (1) must
visit all of the n! permutations, (2) complete (n − 1)! of the 1-loops
(possibly completing the last at step πm), and (3) visit at least (n − 2)!
different 2-loops (since each 2-loop contains only n(n − 1) permutations).
We start with n symbols for the first permutation and then add the weight
of the corresponding walk, which will be at least

wt(π1, . . . , πm) ≥ d(π1, . . . , πm) + c(π1, . . . , πm) + t(π1, . . . πm)− 2

≥ n! + (n − 1)!− 1 + (n − 2)!− 2,

so we conclude the result.
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Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much
of an advantage does Norman have?

Theorem (S.-Surya-Zeng; 2022)

The unique optimal strategy for Rei is to play each option with probability
1/3 when every option remains, and to play the stronger card with
probability 2/3 when two options remain. Moreover, Norman’s advantage
is ≈

√
n if Rei plays each of Rock, Paper, and Scissors n times.

Theorem (Janson; February 23 2024)

The advantage is asymptotic to

3
√
3

2
√
π

√
n.



Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much
of an advantage does Norman have?

Theorem (S.-Surya-Zeng; 2022)

The unique optimal strategy for Rei is to play each option with probability
1/3 when every option remains, and to play the stronger card with
probability 2/3 when two options remain.

Moreover, Norman’s advantage
is ≈

√
n if Rei plays each of Rock, Paper, and Scissors n times.

Theorem (Janson; February 23 2024)

The advantage is asymptotic to

3
√
3

2
√
π

√
n.



Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much
of an advantage does Norman have?

Theorem (S.-Surya-Zeng; 2022)

The unique optimal strategy for Rei is to play each option with probability
1/3 when every option remains, and to play the stronger card with
probability 2/3 when two options remain. Moreover, Norman’s advantage
is ≈

√
n if Rei plays each of Rock, Paper, and Scissors n times.

Theorem (Janson; February 23 2024)

The advantage is asymptotic to

3
√
3

2
√
π

√
n.



Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much
of an advantage does Norman have?

Theorem (S.-Surya-Zeng; 2022)

The unique optimal strategy for Rei is to play each option with probability
1/3 when every option remains, and to play the stronger card with
probability 2/3 when two options remain. Moreover, Norman’s advantage
is ≈

√
n if Rei plays each of Rock, Paper, and Scissors n times.

Theorem (Janson; February 23 2024)

The advantage is asymptotic to

3
√
3

2
√
π

√
n.



More General Games

Given a digraph D, define the D-game by having two players
simultaneously pick vertices of D each round.

1

23

Given a non-negative integer vector r⃗ , the semi-restricted D-game (with
parameter r⃗) is defined by having players Rei and Norman iteratively play
the D-game, with the restriction that Rei must play vertex v exactly r⃗v
times. E.g. if D is as above and r⃗ = (n, n, n), then this is semi-restricted
RPS.
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Optimal Scores
Let SD(r⃗) be the expected score for Norman in the semi-restricted D game
is both players play optimally.

Theorem (S.-Surya-Zeng; 2022)
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r⃗u + CDM
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where M =
∑

u r⃗u and CD is some constant.

Theorem (S.-Surya-Zeng; 2022)

SD(n, . . . , n) ≥ max
v

(d+(v)− d−(v))n,

SD(n, . . . , n) ≤ max
v

(d+(v)− d−(v))n + CDn
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Theorem (S.-Surya-Zeng; 2022)

If D is the directed path 1 → 2 → 3, then a strategy for Rei is optimal if
and only if she plays 3 with probability 1/2 whenever she can.

1 2 3
p 1/2− p 1/2

Question

Does every digraph D have an optimal strategy for Rei which is
“oblivious”, i.e. which only looks at which u Rei can play and ignores how
many times she can play it?
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The digraph depicted below does not have an oblivious optimal strategy
for Rei.

u1

v1 v2 v3

u2 u3

Theorem (S.-Surya-Zeng; 2022)

Almost every Eulerian tournament does not have an oblivious optimal
strategy for Rei.
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Proofs: Bounds

Theorem

SD(n, . . . , n) ≤ max
v

(d+(v)− d−(v))n + CDn
1/2.

Consider the following strategy for Rei: uniformly at random pick
v ∈ V (D) until some option runs out, then play arbitrarily. Until
something runs out, Norman can gain at most

max
v

d+(v)

|V (D)| −
d−(v)

|V (D)|

points in expectation each round. Thus in the first phase, Norman gains at
most (

max
v

d+(v)

|V (D)| −
d−(v)

|V (D)|

)
· |V (D)|n.

One can show that in expectation only CDn
1/2 turns remain after Rei runs

out of some vertex to play.
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u∈N−(v)

r⃗u + CDM
2/3,

where M =
∑

r⃗u.

First Rei arbitrarily plays vertices v with r⃗v ≤ M2/3, which costs her at
most |V (D)|M2/3. Rei then plays vertex v with r⃗v∑

u r⃗u
until something runs

out, then she plays arbitrarily. During this first phase, Norman expects to
gain at mostmax

v

∑
u∈N+(v)

r⃗u∑
w r⃗w

−
∑

u∈N−(v)

r⃗u∑
w r⃗w

 ·
∑
w

r⃗w .

After something runs out, we expect the number of actions for any v to be

at most r⃗
−1/2
v

∑
u r⃗u ≤ M−1/3 ·M.
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Proofs: Strategies

Lemma

For RPS we have SD(r⃗ − δs) ≤ SD(r⃗ − δp) + 1.



Proofs: Strategies

Assume there was an oblivious optimal strategy for Rei with pw the
probability she picks w when every option is available. One can show for
this D that if any w ,w ′ has∑

u∈N+(w)

pu −
∑

u∈N−(w)

pu <
∑

u∈N+(w ′)

pu −
∑

u∈N−(w ′)

pu,

then there exist r⃗ with SD(r⃗) ≫ maxv
∑

u∈N+(v) r⃗u −
∑

u∈N+(v) r⃗u. One

can show that such w ,w ′ exist for all p, giving a contradiction.
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